Stable Diffusion with Amazon Bedrock Python boto3

· Thomas Taylor

invoking amazon bedrock runtime stable diffusion model

Amazon Bedrock is a managed service provided by AWS that allows users to invoke models. For more information about the service, please refer to their user guide here.

For this article, we’re going to focus on how to invoke the Stable Diffusion model using the Python SDK: boto3. If you want to learn about the Amazon Bedrock SDK in general or how to invoke Claude with it, I have an article here that goes into detail.

What is Stable Diffusion

Stable diffusion is a text-to-image model first released in 2022. The term “diffusion” originates from diffusion models in machine learning. OpenAI’s DALL-E 2 is another example of a model that leverages diffusion. It’s open source, free, and easy to run! In addition, it has an active community and a plethora of how-to tutorials.

For more information about Stable Diffusion, check out the AWS write up about it.

How use Stable Diffusion with Amazon Bedrock

For this article, we’ll be leveraging the Python AWS SDK: boto3 to call the Stable Diffusion model.

Install boto3

Let’s begin by installing the latest version of boto3 and the Python image library PIL.

1pip3 install boto3 Pillow

Lookup the model inference parameters

Each model has specific inference parameters that must be supplied to Bedrock.

As of time of writing, Dec. 22nd 2023, the supported inference parameters for Stable Diffusion 1.0 text-to-image are:

 2    "text_prompts": [
 3        {
 4            "text": string,
 5            "weight": float
 6        }
 7    ],
 8    "height": int,
 9    "width": int,
10    "cfg_scale": float,
11    "clip_guidance_preset": string,
12    "sampler": string,
13    "samples",
14    "seed": int,
15    "steps": int,
16    "style_preset": string,
17    "extras": JSON object     

The smallest payload we can send is this:

2    "text_prompts": [{"text": string}]

Use the invoke_model API

 1import base64
 2import json
 3import io
 4from PIL import Image
 6import boto3
 8client = boto3.client("bedrock-runtime", region_name="us-east-1")
10body = {"text_prompts": [{"text": "A blue bird"}]}
12response = client.invoke_model(
13    body=json.dumps(body), modelId="stability.stable-diffusion-xl"
16response_body = json.loads(response["body"].read())
17finish_reason = response_body.get("artifacts")[0].get("finishReason")
19if finish_reason in ["ERROR", "CONTENT_FILTERED"]:
20    raise Exception(f"Image error: {finish_reason}")
22base64_image = response_body["artifacts"][0]["base64"]
23base64_bytes = base64_image.encode("ascii")
24image_bytes = base64.b64decode(base64_bytes)
25image =

Here is the line-by-line breakdown of the code above:


stable diffusion output using Amazon Bedrock

#aws   #aws-cdk   #python   #serverless   #generative-ai  

Reply to this post by email ↪